
DISTRIBUTED INTERRUPTS MECHANISM VERIFICATION AND
INVESTIGATIONBY MODELING ON SDL AND SYSTEMC

Session: SpaceWire networks and protocols

Short Paper

Liudmila Onishchenko, Artur Eganyan, Irina Lavrovskaya

Saint-Petersburg University of Aerospace Instrumentation. 67, B. Morskaya, Saint-
Petersburg, Russia

E-mail: luda_o@rambler.ru, artfla@rambler.ru, i_lavrovskaya@mail.ru

ABSTRACT
Distributed Interrupt mechanism has been proposed for next SpaceWire standard release.
Interrupt codes and Interrupt_Acknowledge codes are low-latency signaling codes,
according to specification their distribution does not depend on data flow. That makes it
useful for real-time distributed systems interconnections. In this paper we present: the
distributed interrupts mechanism parameters and their estimation, verification by using
model on the Specification and Description Language (SDL); investigation and analysis
of this mechanism by using the SpaceWire Network Functional Model in SystemC and
we also give some recommendations about using the distributed interrupts mechanism
and choosing the timeout parameters for efficient recovery.

1. DISTRIBUTED INTERRUPT MECHANISM OVERVIEW

The detailed Distributed Interrupt description is in [1]. Interrupt-Code represents a system
signal request. It is issued by a node link that will be considered as the source node for
this interrupt (Interrupt Source). It is distributed over the network to all other nodes. An
Interrupt-Code should be accepted for handling in some node of the SpaceWire network,
which will be called the Interrupt Handler. The host of the node is supposed to implement
some interrupt processing routine. One of 32 interrupt request signals (interrupt source
identifiers) could be identified by the Interrupt-Code.

Interrupt_Acknowledge-Code represents a confirmation that the Interrupt-Code has
reached some Interrupt Handler and has been accepted by it for processing. The Interrupt
Handler node should send an Interrupt_Acknowledge-Code with the same five-bit
interrupt source identifier as in the accepted Interrupt Code. The Interrupt-Code is
broadcasted to find an Interrupt Handler node. To eliminate infinite cycling of the
broadcasted control code specific mechanisms and rules for its handling in nodes and
routers are provided:

Each link controller of a node and each router contain one 32-bit Interrupt Source
Register (ISR). When the link interface receives from its host an interrupt request with a
five-bit interrupt identifier it sets appropriate bit to '1' in the 32-bit ISR. Then it sends out

the Interrupt-Code with the five-bit interrupt source identifier field. If the correspondent
bit in the ISR is in ‘1’state already then the Interrupt-Code is not sent out. A subsequent
Interrupt-Code with the same interrupt source identifier can be sent by the link only after
receipt of an Interrupt Acknowledge with the correspondent interrupt source identifier. In
a router, when a link interface receives an Interrupt-Code it checks the correspondent bit
in the ISR. If the bit is '0' it sets the ISR bit to '1' the signal propagates to all the router
output ports (except the port that have issued the signal). But if the correspondent bit in
the 32-bit ISR is equal to '1' the Interrupt-Code will be ignored (to prevent repeated
Interrupt-Code propagation in networks with circular connections). The router shall not
retransmit the Interrupt-Code to its output ports.

The Interrupt-Code handling time TH shall be more that maximum Interrupt-Code
propagation time from Interrupt Source to the farthest node (may be not Interrupt Source)
in the network by the longest way in the worst case (TIHmax). The Time Tg between
getting by Interrupt Source Interrupt_Acknowledge-Code and sending next Interrupt-
Code shall be more then maximum Interrupt_Acknowledge-Code propagation time from
Interrupt Handler to the farthest node (may be not Interrupt Handler) in the network by
the longest way in the worst case (TIGPmax). Because of symmetry Interrupt-Code and
Interrupt_Acknowledge-Code mechanism propagation TIHmax = TIGPmax = TIPmax.

In a SpaceWire network faults and errors may occur: link disconnect error or parity error
can cause an Interrupt -Code/Interrupt_Acknowledge-Code loss; there may be
spontaneous change of an ISR bit state as a result of intermittent faults in a node or in a
router. To ensure tolerance against faults and spontaneous changes in ISR special timers
are used. Each ISR in a node or in a router has a timer per ISR bit. A timer starts at the
receipt of an Interrupt-Code with correspondent five-bit interrupt source identifier and
resets at receipt of an Interrupt_Acknowledge-Code with the same interrupt source
identifier. In case of timeout before the timer is reset, the ISR timeout event arises; the
correspondent ISR bit should be reset to ‘0’.

2. DISTRIBUTED INTERRUPT PARAMETERS

To use Distributed Interrupt parameters we should define the following parameters:
TtimeoutN – a timeout value for ISR in Nodes; TtimeoutR – a timeout value for ISR in
Routers; Tg, TH – see before. This parameters depends on the network topology, router
architecture and link bit rates and they affect to the latency characteristics that important
for real-time. We give some expressions for them below.

Let D – network diameter (depends upon the SpaceWire network interconnection
topology); Tbit – one bit transfer time; Twtc– Time-code transport through router delay
(ignoring interference with previous characters/codes; depends upon implementation);
PLen – the length of the longest way between any two nodes in the network (depends
only on the network topology). The TIPmax, TH and Tg values are: TIPmax = (PLen -
1)*(Twtc + 13Tbit + 31*14*Tbit) + (14Tbit)* PLen; and Tg = TH = 1,5 TIPmax

A maximum Interrupt-Code (and Interrupt_Acknowledge-Code) time delivery TImax is:

TImax = (D-1)*(Twtc + 13Tbit + 31*14*Tbit) + (14Tbit)*D

In practice it is hardly ever to distinguish a maximum propagation time, but we should
use it for timeout value computation. Timeout value TtimeoutR should be less then timeout
value TtimeoutN on TIPmax. It will provide, that in the node and in all routers timeouts
TtimeoutR will be over, when timeout TtimeoutN is expired. Timeout value for router TtimeoutR
shall be: TtimeoutR = 2(2TImax + 1,5 TIPmax), then TtimeoutN = TtimeoutR + TIPmax. A mean
Interrupt-Code and Interrupt_Acknowledge-Code propagation time is much lower then
maximum value: TImean = (D-1)*(Twtc + 13Tbit + 2*14*Tbit) + (14Tbit)*D

If all links in the network have different bit rates, it should be taken into account in
computation of timeout values and processing time, for example to use the value of the
minimal bit rate in the network.

3. EXAMPLE

 For example we
use topology
shown in Fig.1. and
Fig.2 At 400 Mb/s
and 10Mb/s we got
values (see Table
1.). First two rows
correspond to Grid
based tor network,
last two-
correspond tree
network

Table 1

PLen D Twtc,us Tbit,us TIPmax,us Tg = TH,us TImax,us TtimeoutR,us TtimeoutN ,us TImean,us
10 4 0.2 0.0025 12.2075 18.31125 4.0925 52.9925 65.2 1.0475
10 4 0.2 0.1 418.1 627.15 140.3 1815.5 2233.6 18.5
6 6 0.2 0.0025 6.7975 10.19625 6.7975 47.5825 54.38 1.7225
6 6 0.2 0.1 232.9 349.35 232.9 1630.3 1863.2 29.9

4. SDL TOOLSUITE

SDL ToolSuite gives an ability to implement specifications. A distributed interrupt
system implementation on the SDL allows to have a reference implementation for it and
check how Interrupt codes and InterruptAcknowledge codes are sent through the
network. This model can be verified and it is very useful to check the correctness of the
specification.

The model implemented on the SDL fully conforms to the distributed interrupts
mechanism of the SpaceWire network. SDL model is intended for a demonstration of an

N1

R1_1

R2_1 R2_ 4

R3 _1 R3_ 4 R3_13 R3 _16

N2 N3 N4 N5 N6 N7 N8

 1

 2

 3

 4

 5

 6

 7

 8

R 1

 1

N 1_ 1

 1

N 1 _2

 1

N 1_ 3

 1

N 1 _4

 1

 2

 3

 4

 5

 6

 7

 8

R 4

 1

N 4_ 1

 1

N 4 _ 2

 1

N 4_ 3

 1

N 4 _ 4

 1

 2

 3

 4

 5

 6

 7

 8

 9

R 2

 1

N 2_ 1

 1

N 2 _2

 1

N 2_ 3

 1

N 2 _4

 1

 2

 3

 4

 5

 6

 7

 8

R 5

 1

N 5_ 1

 1

N 5 _2

 1

N 5_ 3

 1

N 5 _4

 1

 2

 3

 4

 5

 6

 7

 8

R 3

 1

N 3 _ 1

 1

N 3_ 2

 1

N 3 _ 3

 1

N 3_ 4

 1

 2

 3

 4

 5

 6

 7

 8

R 6

 1

N 6 _ 1

 1

N 6_ 2

 1

N 6 _ 3

 1

N 6_ 4

 1

 2

 3

 4

 5

 6

 7

 8

R 7

 1

N 7_ 1

 1

N 7 _2

 1

N 7_ 3

 1

N 7 _4

 1

 2

 3

 4

 5

 6

 7

 8

R 8

 1

N8 _ 1

 1

N 8 _2

 1

N8 _ 3

 1

N 8 _4

 1

 2

 3

 4

 5

 6

 7

 8

R 9

 1

N 9 _ 1

 1

N 9_ 2

 1

N 9 _ 3

 1

N 9_ 4

Fig. 2. 2D Grid based tor

Fig. 1. Tree topology

interrupt mechanism functionality and for a verification of the SpaceWire specification.
This model isn't just an example of a network functionality, but it is in a strict
correspondence with the specification.

The SDL model of the distributed interrupts includes the description of general elements
of the SpaceWire network. These elements are a node, a router and a link.
Communication between node and router is implemented as two unidirectional channels,
turned different directions. Using these elements it is possible to create networks of any
difficulty and construction. In the presented model it is possible to observe how the
Interrupt codes and InterruptAcknowledge codes go through the network. Also there is an
opportunity to model some difficult in investigation situations with lost of data, errors in
links, distribution recovery in case of errors etc.Using the SDL ToolSuite it is possible to
investigate distributed interrupts mechanism, check the correctness of the realization by
verification.

5. INVESTIGATION BY SPACEWIRE NETWORK FUNCTIONAL MODEL

The SpaceWire Network Functional model (SpWNM) includes a description of basic
SpaceWire network elements like node, routing switch and link, allows to assemble a
SpaceWire interconnection system of required structure, implements wormhole routing,
time flow and distributed interrupts mechanisms, generation and transmission of data
packets. We use this tool for distributed interrupts mechanism investigations. In the
sections 2 and 3 we calculate distributed interrupt parameters. We use them for
investigation in SpWNM. The 2D Grid based tor is more complicated for distributed
interrupts so it is more interesting. Some investigation results are shown below.

Communication network workload by Interrupt-
codes and Interrupt_Acknowledge-codes as a

function of interrupt-code intensity

0
5

10
15
20
25
30
35
40

72
0

18
00

25
71

.42
86

36
00

51
42.85

71
72

00
12

00
0

24
00

0

Intensity, Interrupts/ms

W
or

kl
oa

d,
 %

Interrupt-code propogation time as a function of
interrupt-code intensity

0

500

1000

1500

2000

720 2250 6000 24000
in te n si ty, In te rru pts/m s

Pr
op

ag
at

io
n

tim
e,

 n
s

Max Min Mean

Fig.3. Communication network workload by Interrupt-codes and Interrupt_Acknowledge-codes as a
function of interrupt-code intensity. Interrupt-code propogation time as a function of interrupt-code

intensity

6. REFERENCES

1. Yuriy Sheynin, Sergey Gorbatchev, Liudmila Onishchenko, “Real-Time
Signalling in SpaceWire Networks”. International SpaceWire Conference,
Dundee 2007. Conference Proceedings. ISBN: 978-0-9557196-0-8, 4рg.

